Co-accumulation of prephenate, L-arogenate, and spiro-arogenate in a mutant of Neurospora.

نویسندگان

  • L O Zamir
  • E Jung
  • R A Jensen
چکیده

A mutant strain of Neurospora crassa blocked in each of the initial steps of tryptophan, tyrosine, and phenylalanine biosynthesis was previously shown to accumulate and secrete prephenate and L-arogenate (Jensen, R.A., Zamir, L.O., St. Pierre, M., Patel, N., and Pierson, D.L. (1977) J. Bacteriol. 132, 896-903). We now report the co-accumulation of yet another compound which was identified (Zamir, L.O., Tiberio, R., Jung, E., and Jensen, R.A. (1982) J. Biol. Chem. (1983) 258, 6486-6491) as the lactam derivative of L-arogenate. This structure, spiro-arogenate, undergoes a facile acid-catalyzed conversion to L-phenylalanine (as does L-arogenate). Since L-arogenate is conveniently quantitated as 5-dimethylaminonapthalene-1-sulfonyl (dansyl)-phenylalanine following acidification and dansylation, the unknown presence of spiro-arogenate may easily lead to overestimation of L-arogenate present in mixtures. Reliable quantitative assays for both L-arogenate and spiro-arogenate in mixtures were designed utilizing [3H]dansyl-chloride and exploiting the inability of the spiro-arogenate molecule to be dansylated in contrast to L-arogenate. The initial appearance of spiro-arogenate during accumulation lagged behind prephenate and L-arogenate, and spiro-arogenate accumulation leveled off after 5 days while prephenate and L-arogenate accumulations continued. It seems likely that spiro-arogenate is derived directly from L-arogenate. Prephenate, L-arogenate, and spiro-arogenate comprised about 70, 15, and 15% fractions of the total accumulation in a representative accumulation experiment designed to maximize spiro-arogenate yields. Modest variations in co-metabolite ratios were obtained under nutritional conditions where carbon source, growth temperature, duration of incubation time, and amino acid additions were experimental variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals.

l-Phe, a protein building block and precursor of numerous phenolic compounds, is synthesized from prephenate via an arogenate and/or phenylpyruvate route in which arogenate dehydratase (ADT) or prephenate dehydratase, respectively, plays a key role. Here, we used Petunia hybrida flowers, which are rich in Phe-derived volatiles, to determine the biosynthetic routes involved in Phe formation in p...

متن کامل

Arogenate (pretyrosine) is an obligatory intermediate of L-tyrosine biosynthesis: confirmation in a microbial mutant.

Wild-type Brevibacterium flavum has been shown to possess arogenate dehydrogenase activity and to lack prephenate dehydrogenase, thereby providing presumptive evidence that arogenate (previously named "pretyrosine") is an obligatory intermediate of L-tyrosine biosynthesis. A similar enzymological pattern has been discerned in extracts made from wild-type cultures of various species of cyanobact...

متن کامل

Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate.

The specific enzymological route of L-phenylalanine biosynthesis has not been established in any higher plant system. The possible pathway routes that have been identified in microorganisms utilize either phenylpyruvate or L-arogenate as a unique intermediate. We now report the presence of arogenate dehydratase (which converts L-arogenate to L-phenylalanine) in cultured-cell populations of Nico...

متن کامل

Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan.

Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between...

متن کامل

A single cyclohexadienyl dehydrogenase specifies the prephenate dehydrogenase and arogenate dehydrogenase components of the dual pathways to L-tyrosine in Pseudomonas aeruginosa.

Dual biosynthetic pathways diverge from prephenate to L-tyrosine in Pseudomonas aeruginosa, with 4-hydroxyphenylpyruvate and L-arogenate being the unique intermediates of these pathways. Prephenate dehydrogenase and arogenate dehydrogenase activities could not be separated throughout fractionation steps yielding a purification of more than 200-fold, and the ratio of activities was constant thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 10  شماره 

صفحات  -

تاریخ انتشار 1983